Indoor Air Quality Assessments: Mould

Daniel Fong
National Collaborating Centre for Environmental Health
Indoor air quality workshop
CIPHI National Education Conference
Winnipeg, MB | June 23, 2013

National Collaborating Centre for Environmental Health

Centre de collaboration nationale en santé environnementale

Outline

Introduction

- What is Mould?
- Sources
- Health effects

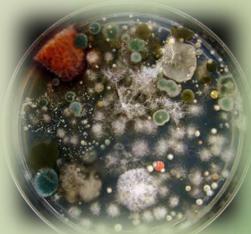
Sampling and Interpretation

- Sampling methods
- Interpreting results (example lab reports)

Management

- Education
- Remediation see resources

Introduction


What is Mould?

Moulds are multi-cellular spore-forming filamentous organisms

- Ubiquitous, outdoor and indoor
- >100,000 reported species, few hundred are relevant to human exposure
- Saprophytes (live off dead organic matter), parasites, symbionts

Growth requires...

- O_2
- Organic carbon source
- Temperature (ideal = 18-32°C)
- Time
- Moisture (e.g., RH >60%)
 - most important and only factor that can be controlled indoor

Sources

- Walls, floors and ceilings, wallpaper
- Insulation, carpet,
- Furniture, mattress
- Paper, cardboard
- Food, oil
- HVAC

- Dust
- Plants
- Soil
- Other biodegradable organic materials, even in small amounts or parts of seemingly inorganic substances (e.g., residue/condensation on glass, plastics, caulking)

Concentrations are generally higher outdoor vs. indoor

Health Effects

Irritation

- Eyes, skin
- Upper RT
 - Nose, throat irritation
- Lower RT
 - Cough, wheezing, shortness of breath
- Infection (opportunistic)

Immunological reactions

- Asthma symptoms
- Hypersensitivity pneumonitis (inflammation of alveoli)
- Allergic rhinitis, sinusitis, dermatitis

Vulnerable populations:
immunocompromised (HIV/AIDS), immunosuppressed
(transplant, chemotherapy patient);
those with allergies, chronic underlying respiratory disease
(COPD, asthma); infants, elderly

Sampling & Interpretation

Many factors affecting the composition of mould in the air...

- Growth + distribution
- Note outdoor and indoor conditions
- A few examples...
 - Climate
 - temperature, season, time of day,
 - Aerosolization
 - Wind, rain, anthropogenic activity, turbulence
 - Indoor pets, plants, etc.

Sampling methods

'Non-culturable' (air)

• spore traps

Direct microscopic examination (qualitative)

• Tape, swab, bulk

Culturable (air)

 Anderson, biocassettes

Non-culturable Fungi Air Sampling

Spore traps (e.g., air-o-cells)

Sampled fungi (viable/nonviable) are analyzed under microscope

Used for determining total levels of fungi in air

- Can provide...
 - ID to genus level
 - Concentration (spores/m³)
 - Genus-level comparison between samples

EMLab P&K http://www.emlab.com/m/store/003-2022-01_Lg.jpg

Culturable Fungi Air Sampling

Andersen, biocassettes, RCS, etc.

Sampled fungi are collected onto growth media; subsequently enumerated and isolated for ID

Used for determining species and viability of fungi in the air

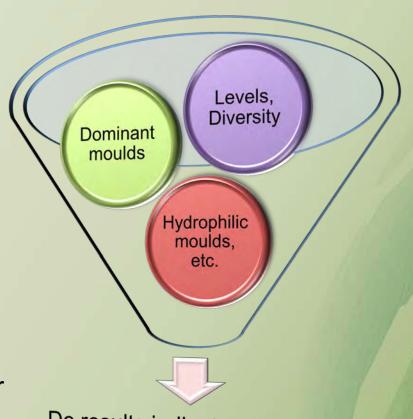
- Can provide...
 - ID genus + species (e.g.,
 Aspergillus, Penicillium)
 - Concentration (CFU/m³)
 - Species-level comparison between samples

EMLab P&K http://www.emlab.com/m/store/012-3347-00_Lg.jpg

Surface Sampling

Surface sampling (tape lift, bulk, swab)

Sampled fungi (viable/nonviable) are analyzed under microscope


Used to verify presence /absence of mould on surfaces

- Can provide...
 - relative level of mould on a surface (qualitative, genus level)
 - information on whether viable fragments or spores are present
 - information on background debris

Interpreting Results – Compare Indoor vs. Outdoor (control)

Anaylze lab results...

- 'Expected' moulds and levels between...
 - Suspect areas...
 - indoor air
 - surfaces
 - 'Control'/baseline areas...
 - outdoor air
 - non-suspect areas/rooms
- Any potential indicators of indoor mould/dampness?
 - further investigation?

Do results indicate dampness + mould growth indoors?

Interpreting Results – Potential indicators

Level

• spores/m³, CFU/m³, # hyphal fragments/m³: Indoor > outdoor

Diversity

- Mould (genus/species) ID'ed in indoor sample are dissimilar to those in outdoor sample
- presence of a genus/species in indoor but NOT outdoor sample

Dominance

 mould that are dominant in indoor sample are dissimilar to those in outdoor sample

Interpreting Results – Potential indicators

These are not commonly found in indoor air:

Rusts, smuts (plant pathogens/fungi)

Pollen, insect parts

Hydrophilic fungi

- Typical hydrophilic fungi
 - Stachybotrys
 - Fusarium
 - Chaetomium
 - Trichoderma
 - Ulocladium
 - Alternaria
 - Acremonium
 - Actinomycetes
 - Epicoccum
 - Rhizopus...

Table 1. Moisture levels required for growth of selected microorganisms in construction, finishing and furnishing materials

Moisture level	Category of microorganism
High (a _w , > 0.90; ERH, > 90%)	Tertiary colonizers (hydrophilic)
	Alternaria alternata
	Aspergillus fumigatus
	Epicoccum spp.
	Exophiala spp.
	Fusarium moniliforme
	Mucor plumbeus
	Phoma herbarum
	Phialophora spp.
	Rhizopus spp.
	Stachybotrys chartarum (S. atra)
	Trichoderma spp.
	Ulocladium consortiale
	Rhodotorula spp.
	Sporobolomyces spp.
	Actinobacteria (or Actinomycetes)
Intermediate (a _w , 0.80–0.90; ERH, 80–90%)	Secondary colonizers
	Aspergillus flavus
	Aspergillus versicolora
	Cladosporium cladosporioides
	Cladosporium herbarum
	Cladosporium sphaerospermum
	Mucor circinelloides
	Rhizopus oryzae
	ninzopus oryzue
Low (a _w , < 0.80; ERH, < 80%)	Primary colonizers (xerophilic)
	Alternaria citri
	Asperaillus (Furntium) amstelodami

World Health Organization. WHO guidelines for indoor air quality: Dampness and mould. Copenhagen, Denmark: WHO, Regional Office for Europe; 2009. Available from: http://www.euro.who.int/document/E92645.pdf

Toxigenic/Pathogenic mould

- Aspergillus fumigatus, A. versicolor, A. niger
- Penicillium chrysogenum
- Fusarium
- Stachybotrys
- Trichoderma
- Chaetomium...

 Presence in multiple indoor air samples may support the need for further investigation or remediation

Let's look at some example lab reports and briefly go over them

- Non-culturable air
 - Culturable air
 - Surface

- Results should not be interpreted in isolation.
 - Needs qualitative risk assessment
 - Information gathering + building history
 - » Complainants, tenants, employees, OHS, managers, maintenance staff (building, custodial, engineer)
 - Visual/Field inspection for mould growth and dampness
 - Professional judgement (may involve a team)
 - Assessment and remediation needs to consider individual site-specific conditions and objectives

- Consider:
 - Adequacy of other information to assess for mould growth and dampness
 - What is the need for and reasons for sampling?
 - Sampling method and protocol
 - What are the pros, cons, limitations?
 - Objective of sampling
 - What will be the use of lab results?
 - Do results indicate need for further investigation, remediation, etc.?
 - Testing cannot tell you whether human health effects will occur.

- Visible mould or dampness is 'unacceptable' from hygiene perspective
 - sample only if visual inspection unclear or suspect hidden mould (e.g., in crawlspaces)
- If sampling results indicate hidden mould...
 - Is there a reasonable exposure pathway?

Management

Education

- Inform on...
 - health effects
 - vulnerable populations
 - potential need for professional assessment/remediation
 - preventing moisture/mould issues

Remediation

- Many resources and guidelines available
 - see additional resources

Mould Resources

NCCEH Evidence Reviews:

- Palaty C, Shum M. Health effects from mould exposure in indoor environments.
 Vancouver, BC National Collaborating Centre for Environmental Health; 2012 Jul.
 Available from:
 - http://www.ncceh.ca/en/practice_policy/ncceh_reviews/mould_and_health_effects
- Palaty C. Mould assessment recommendations. Vancouver, BC: National Collaborating Centre for Environmental Health; 2010 Oct. Available from: http://www.ncceh.ca/en/practice_policy/ncceh_reviews/mould_assessment.
- Palaty C. Mould remediation recommendations. Vancouver, BC: National Collaborating Centre for Environmental Health; 2010 Oct. Available from: http://www.ncceh.ca/en/practice_policy/ncceh_reviews/mould_remediation.

EMLab P&K

- Sampling Overview
 - http://www.emlab.com/s/sampling/S ampling.html
- Sample lab reports
 - http://www.emlab.com/app/services/ Services.po?c=1
- An index of some commonly encountered fungal genera
 - http://www.emlab.com/app/fungi/Fungi.po
- Glossary
 - http://www.emlab.com/s/sampling/F ungalGlossary.html

Mold & Bacteria Consulting Laboratories (MBL)

- Results Interpretation
 - http://www.moldbacteria.com/catego ry/results-interpretation

Guidelines

- Health Canada. Fungal contamination in public buildings: A guide to recognition and management.
 Ottawa, ON: Health Canada, Environmental and Workplace Health; 1995. Available from: http://individual.utoronto.ca/jscott/fpwgmaqpb001.pdf.
- Health Canada. Fungal contamination in public buildings: Health effects and investigation methods.
 Ottawa, ON: Health Canada, Environmental and Workplace Health; 2004. Available from: http://www.hc-sc.gc.ca/ewh-semt/pubs/air/fungal-fongique/index-eng.php.
- Health Canada. Residential indoor air quality guidelines Moulds. Ottawa, ON: Health Canada, Environmental and Workplace Health; 2007 Available from: http://www.hc-sc.gc.ca/ewh-semt/pubs/air/mould-moisissure-eng.php.
- New York City Department of Health and Mental Hygiene. Guidelines on assessment and remediation of fungi in indoor environments. New York, NY: Environmental and Occupational Disease Epidemiology Unit; 2008 Nov. Available from: http://www.nyc.gov/html/doh/downloads/pdf/epi/epi-mold-quidelines.pdf.
- World Health Organization. WHO guidelines for indoor air quality: Dampness and mould. Copenhagen, Denmark: WHO, Regional Office for Europe; 2009. Available from: http://www.euro.who.int/document/E92645.pdf

Books

- Flannigan B, Samson RA, Miller JD, editors.
 Microorganisms in Home and Indoor Work Environments. 1 ed: CRC Press; 2002.
- Flannigan B, Samson RA, Miller JD, editors.
 Microorganisms in Home and Indoor Work Environments. 2 ed: CRC Press; 2011.